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En-tête

Session	:	2025

Groupement	:	B

Code	sujet	:	25MATGRB2

Spécialité	:	Conception	et	industrialisation	en	microtechniques

Durée	:	2	heures

Calculatrice	:	Autorisée	(mode	examen	actif	ou	type	collège)

EXERCICE	1	(10	points)

Résumé	de	l’énoncé

On	étudie	le	refroidissement	d’une	plaque	d’aluminium.	La	température	f(t)	(en	°C)	au	bout	de	t	minutes	suit

une	équation	différentielle,	puis	on	exploite	 l’expression	explicite	de	 f(t)	pour	répondre	à	des	questions	de

modélisation	et	d’interprétation.

Partie	A	–	Équation	différentielle

1.	Résolution	de	l’équation	différentielle	homogène

On	considère	l’équation	:	y'	+	0,25y	=	0

C’est	une	équation	différentielle	 linéaire	du	premier	ordre	à	coefficients	constants.	On	rappelle	 la	 formule

fournie	:

Équation	:	y'	+	a	y	=	0			→			Solution	:	y(t)	=	k	e^{-a	t},	k	\in	\mathbb{R}

Ici,	a	=	0,25.	Donc,	les	solutions	sont	:

y(t)	=	k	e^{-0,25	t},	k	\in	\mathbb{R}

Point	de	méthode	:	On	résout	une	équation	différentielle	linéaire	homogène	du	premier	ordre	en

reconnaissant	la	forme	standard	et	en	utilisant	la	solution	exponentielle.

Erreur	fréquente	:	Oublier	le	signe	négatif	dans	l’exposant	ou	la	constante	d’intégration.

2.	Recherche	d’une	solution	constante	de	l’équation	complète

On	cherche	g(t)	=	c	solution	de	y'	+	0,25y	=	7,5.

g'(t)	=	0

L’équation	devient	0	+	0,25c	=	7,5	donc	c	=	7,5	/	0,25	=	30

c	=	30

Point	de	méthode	:	Pour	trouver	une	solution	particulière	constante,	on	pose	la	dérivée	nulle	et	on



résout	l’équation	algébrique.

Erreur	fréquente	:	Ne	pas	remplacer	y'	par	0	pour	une	fonction	constante.

3.	Ensemble	des	solutions	de	l’équation	complète

L’équation	y'	+	0,25y	=	7,5	est	linéaire	du	premier	ordre.	L’ensemble	des	solutions	est	:

Solution	générale	de	l’homogène	:	k	e^{-0,25	t}

Solution	particulière	:	30

Donc,	toute	solution	s’écrit	:

y(t)	=	k	e^{-0,25	t}	+	30,	k	\in	\mathbb{R}

Point	de	méthode	:	Pour	une	équation	différentielle	linéaire	non	homogène,	la	solution	générale	est	la

somme	d’une	solution	de	l’homogène	et	d’une	particulière.

Erreur	fréquente	:	Oublier	la	constante	d’intégration	ou	la	solution	particulière.

4.	Détermination	de	la	solution	particulière	avec	la	condition	initiale

On	sait	que	f(0)	=	250.	On	utilise	la	forme	générale	:	f(t)	=	k	e^{-0,25	t}	+	30

À	t	=	0	:	f(0)	=	k	+	30	=	250	donc	k	=	220

Donc	:

f(t)	=	220	e^{-0,25	t}	+	30

Point	de	méthode	:	On	utilise	la	condition	initiale	pour	déterminer	la	constante	d’intégration.

Erreur	fréquente	:	Mauvais	report	de	la	condition	initiale,	ou	erreur	de	calcul	lors	de	la	résolution	pour

k.

Partie	B	–	Étude	de	la	fonction

1.	Température	après	un	quart	d’heure	(15	minutes)

On	cherche	f(15)	=	220	e^{-0,25	\times	15}	+	30

0,25	\times	15	=	3,75

e^{-3,75}	≈	0,0235	(à	la	calculatrice)

220	\times	0,0235	≈	5,17

f(15)	≈	5,17	+	30	=	35,17	(arrondi	à	0,1°C	:	35,2°C)

Après	15	minutes,	la	température	est	d’environ	35,2°C.

Point	de	méthode	:	Remplacer	t	par	15	dans	l’expression	de	f,	calculer	l’exponentielle	puis	additionner.

Erreur	fréquente	:	Oublier	d’ajouter	30,	erreur	de	calcul	d’exponentielle	ou	mauvaise	utilisation	de	la

calculatrice.

2.	Limite	de	ff	en	+∞	et	interprétation



f(t)	=	220	e^{-0,25	t}	+	30

Quand	t	\to	+∞,	e^{-0,25	t}	\to	0

Donc	f(t)	\to	30

Conséquence	pour	la	courbe	:	y	=	30	est	une	asymptote	horizontale.

Interprétation	:	La	température	de	la	plaque	se	stabilise	à	30°C	(température	ambiante).

\lim_{t	\to	+\infty}	f(t)	=	30

Point	de	méthode	:	La	limite	d’une	exponentielle	décroissante	est	0,	donc	la	fonction	tend	vers	la

constante	ajoutée.

Erreur	fréquente	:	Confondre	la	limite	avec	la	valeur	initiale	ou	oublier	l’asymptote.

3.	Dérivée	et	variations	de	ff

On	dérive	:	f(t)	=	220	e^{-0,25	t}	+	30

f'(t)	=	220	\times	(-0,25)	e^{-0,25	t}	=	-55	e^{-0,25	t}

Pour	tout	t	\geq	0,	e^{-0,25	t}	>	0,	donc	f'(t)	<	0

La	fonction	f	est	strictement	décroissante	sur	[0	;	+\infty[

Interprétation	:	La	température	de	la	plaque	diminue	constamment	au	cours	du	temps.

f'(t)	=	-55	e^{-0,25	t}	

La	fonction	f	est	strictement	décroissante	sur	[0	;	+\infty[.

Point	de	méthode	:	Dérivée	d’une	exponentielle	composée,	puis	étude	du	signe.

Erreur	fréquente	:	Oublier	le	signe	négatif	ou	mal	appliquer	la	règle	de	dérivation.

4.	Vérification	de	l’affirmation	du	technicien	et	durée	pour	passer	sous	150°C

Le	technicien	affirme	:	«	en	cent	secondes,	la	plaque	a	perdu	cent	degrés	».

Attention	:	100	secondes	=	1	min	40	s	=	1,666...	min.

Calculons	f(0)	:	220	\times	1	+	30	=	250

Calculons	f(1,666...)	:

0,25	\times	1,666...	≈	0,4167

e^{-0,4167}	≈	0,659

220	\times	0,659	≈	145

f(1,666...)	≈	145	+	30	=	175

Perte	de	température	:	250	-	175	=	75	degrés

L’affirmation	est	donc	fausse.

Pour	trouver	le	temps	où	f(t)	<	150	:

f(t)	=	220	e^{-0,25	t}	+	30	<	150

220	e^{-0,25	t}	<	120

e^{-0,25	t}	<	120	/	220	=	0,5455

On	prend	le	logarithme	:

-0,25	t	<	\ln(0,5455)	≈	-0,606



t	>	-0,606	/	0,25	≈	-2,424

Mais	comme	l’exponentielle	est	strictement	décroissante,	on	cherche	le	plus	petit	t	tel	que	f(t)	\leq

150.

Calculons	précisément	:

e^{-0,25	t}	=	120	/	220	=	0,5455

-0,25	t	=	\ln(0,5455)	≈	-0,606

t	=	0,606	/	0,25	=	2,424	minutes

En	secondes	:	2,424	\times	60	≈	145,4	secondes

Arrondi	à	la	seconde	:	145	secondes

Le	technicien	a	tort	:	en	100	secondes,	la	plaque	perd	environ	75°C.

La	température	passe	sous	150°C	au	bout	de	145	secondes	(arrondi	à	la	seconde).

Point	de	méthode	:	Bien	convertir	les	unités	(minutes/secondes),	isoler	l’exponentielle,	puis	appliquer

le	logarithme	népérien.

Erreur	fréquente	:	Oublier	la	conversion	des	unités,	ou	se	tromper	dans	la	manipulation	des	inégalités

avec	le	logarithme.

5.	Croquis	de	la	courbe	représentative

La	courbe	de	f(t)	=	220	e^{-0,25	t}	+	30	est	une	décroissance	exponentielle	partant	de	250,	tendant	vers	30,

avec	une	pente	négative,	et	les	points	remarquables	:

f(0)	=	250	(point	de	départ)

f(15)	≈	35,2	(après	15	min)

Asymptote	horizontale	y	=	30

Point	où	f(t)	=	150	:	t	≈	2,42	min

(Le	croquis	doit	montrer	la	décroissance,	l’asymptote,	les	points	calculés,	et	indiquer	la	décroissance	stricte.)

Point	de	méthode	:	Pour	tracer	une	exponentielle	décroissante,	placer	les	points	clés,	l’asymptote,	et

indiquer	les	valeurs	calculées.

Erreur	fréquente	:	Tracer	une	courbe	qui	remonte,	ou	ne	pas	indiquer	l’asymptote.

EXERCICE	2	(10	points)

Résumé	de	l’énoncé

On	 étudie	 un	 signal	 électrique	u(t)	 de	 période	 \pi,	 défini	 par	u(t)	=	 t	 pour	 t	 \in	 [0	 ;	 \pi[.	 On	 analyse	 ses

propriétés,	sa	fréquence,	son	développement	en	série	de	Fourier,	puis	ses	amplitudes	et	son	spectre.

1.	Calcul	de	quelques	valeurs	de	uu

u(1)	=	1	(car	1	∈	[0	;	π[)

u(π)	=	u(0)	=	0	(par	périodicité,	car	π	≡	0	mod	π)

u(π	+	1)	=	u(1)	=	1	(π	+	1	≡	1	mod	π)

u(4)	=	u(4	-	π	×	1)	=	u(4	-	3,14)	=	u(0,86)	=	0,86

u(1)	=	1



u(π)	=	0

u(π	+	1)	=	1

u(4)	≈	0,86

Point	de	méthode	:	Pour	une	fonction	périodique,	ramener	l’argument	dans	l’intervalle	de	définition

par	soustraction	de	multiples	de	la	période.

Erreur	fréquente	:	Oublier	la	périodicité	ou	mal	calculer	le	reste.

2.	Croquis	du	signal	u(t)u(t)	sur	trois	périodes

Sur	[0	;	3\pi],	le	signal	est	une	rampe	qui	monte	de	0	à	π,	puis	recommence	à	0,	etc.	(Le	croquis	doit	montrer

trois	«	dents	de	scie	»	identiques,	de	0	à	π,	puis	0	à	π,	etc.)

Point	de	méthode	:	Représenter	la	fonction	sur	chaque	période,	puis	recopier	le	motif.

Erreur	fréquente	:	Oublier	la	discontinuité	à	chaque	multiple	de	π.

3.	Le	signal	est-il	alternatif	?

Un	signal	est	alternatif	si	sa	valeur	moyenne	sur	une	période	est	nulle	:

Moyenne	sur	[0	;	\pi]	:	\frac{1}{\pi}	\int_0^{\pi}	t	dt	=	\frac{1}{\pi}	\left[	\frac{t^2}{2}	\right]_0^{\pi}

=	\frac{1}{\pi}	\cdot	\frac{\pi^2}{2}	=	\frac{\pi}{2}	\neq	0

Donc,	le	signal	n’est	pas	alternatif.

Le	signal	u(t)	n’est	pas	alternatif.

Point	de	méthode	:	Calculer	la	valeur	moyenne	par	intégration	sur	une	période.

Erreur	fréquente	:	Croire	que	toute	fonction	périodique	est	alternative.

4.	Fréquence	et	pulsation	du	signal

Période	T	=	\pi

Fréquence	f	=	1	/	T	=	1	/	\pi	(en	Hz)

Pulsation	\omega	=	2\pi	/	T	=	2\pi	/	\pi	=	2	(en	rad/s)

f	=	1	/	\pi	Hz	;	\omega	=	2	rad/s

Point	de	méthode	:	Utiliser	les	formules	f	=	1/T	et	\omega	=	2\pi	/	T.

Erreur	fréquente	:	Inverser	les	formules	ou	oublier	les	unités.

5.	Calcul	des	coefficients	de	Fourier	b_nb_n

On	admet	que	\int_0^{\pi}	t	\sin(2	n	t)	dt	=	-\pi	/	(2n)	pour	n	\geq	1.

Formule	du	coefficient	:	b_n	=	\frac{2}{T}	\int_0^T	f(t)	\sin(n\omega	t)	dt

Ici,	T	=	\pi,	\omega	=	2,	donc	n\omega	=	2n



b_n	=	\frac{2}{\pi}	\int_0^{\pi}	t	\sin(2n	t)	dt	=	\frac{2}{\pi}	\left(	-\frac{\pi}{2n}	\right	)	=	-\frac{1}

{n}

Pour	tout	n	\geq	1	:	b_n	=	-\frac{1}{n}

Point	de	méthode	:	Bien	appliquer	la	formule	du	coefficient	de	Fourier,	attention	aux	facteurs.

Erreur	fréquente	:	Oublier	de	multiplier	par	2	/	T	ou	mal	utiliser	l’intégrale	donnée.

6.	Calcul	des	amplitudes	A_nA_n	et	remplissage	du	tableau

On	a	a_n	=	0	pour	n	\geq	1

A_0	=	|a_0|	(calculé	plus	haut	:	a_0	=	\pi	/	2)

Pour	n	\geq	1	:	A_n	=	|b_n|	=	1	/	n

nn 0 1 2 3 4

Valeur	exacte	de	A_n \pi	/	2 1 1/2 1/3 1/4

Valeur	approchée	à	10^{-2}	près 1,57 1,00 0,50 0,33 0,25

Point	de	méthode	:	Les	amplitudes	sont	les	valeurs	absolues	des	coefficients.

Erreur	fréquente	:	Oublier	de	prendre	la	valeur	absolue	ou	mal	arrondir.

7.	Analyse	des	spectres

7.a.	Pourquoi	le	Spectre	2	ne	peut	pas	être	celui	de	u(t)u(t)	?

Le	spectre	2	présente	des	amplitudes	nulles	pour	certains	n	(par	exemple,	pour	n	=	2).	Or,	pour	u(t),	tous	les

A_n	pour	n	\geq	1	sont	non	nuls.

Le	Spectre	2	ne	peut	pas	être	celui	de	u(t)	car	il	comporte	des	amplitudes	nulles	pour	certains	n,	ce	qui

n’est	pas	le	cas	ici.

7.b.	Pourquoi	le	Spectre	3	ne	peut	pas	être	celui	de	u(t)u(t)	?

Le	spectre	3	montre	des	amplitudes	A_n	qui	augmentent	avec	n,	alors	que	pour	u(t),	elles	décroissent	comme

1/n.

Le	Spectre	3	ne	peut	pas	être	celui	de	u(t)	car	les	amplitudes	A_n	augmentent	avec	n,	au	lieu	de

décroître.

Point	de	méthode	:	Pour	reconnaître	un	spectre,	observer	la	décroissance	ou	la	nullité	des	amplitudes.

Erreur	fréquente	:	Confondre	la	décroissance	avec	la	croissance,	ou	ne	pas	regarder	tous	les	n.

Formulaire	récapitulatif

y'	+	a	y	=	0	→	y(t)	=	k	e^{-a	t}

Équation	différentielle	linéaire	du	premier	ordre	:	solution	générale	=	solution	homogène	+	solution

particulière

Valeur	moyenne	sur	une	période	T	:	\frac{1}{T}	\int_0^T	f(t)	dt



Fréquence	:	f	=	1	/	T

Pulsation	:	\omega	=	2\pi	/	T

Développement	en	série	de	Fourier	:

a_0	=	\frac{1}{T}	\int_0^T	f(t)	dt

a_n	=	\frac{2}{T}	\int_0^T	f(t)	\cos(n\omega	t)	dt

b_n	=	\frac{2}{T}	\int_0^T	f(t)	\sin(n\omega	t)	dt

A_n	=	\sqrt{a_n^2	+	b_n^2}

Limite	d’une	exponentielle	décroissante	:	\lim_{t	\to	+\infty}	k	e^{-a	t}	=	0

Conseils	généraux	pour	réussir	l’épreuve	de	mathématiques	en	BTS

1.	 Lisez	attentivement	chaque	question	:	repérez	les	données,	les	unités	et	les	objectifs	de	chaque

partie	avant	de	commencer	à	rédiger.

2.	 Justifiez	chaque	étape	:	expliquez	vos	calculs,	citez	les	formules	ou	théorèmes	utilisés,	même	pour

des	étapes	simples.

3.	 Soignez	les	conversions	d’unités	:	vérifiez	toujours	si	les	temps	sont	en	secondes	ou	en	minutes,	et

adaptez	vos	calculs	en	conséquence.

4.	 Encadrez	les	résultats	finaux	:	cela	facilite	la	correction	et	montre	que	vous	savez	présenter	une

réponse	claire.

5.	 Relisez-vous	et	vérifiez	vos	calculs	:	une	erreur	d’étourderie	peut	coûter	de	nombreux	points,

surtout	sur	les	calculs	d’exponentielles	ou	de	logarithmes.
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